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Abstract. Spatially periodic solutions (cnoidal waves) for excitations of a molecular-crystal
model with the dispersion term on a diatomic molecule ring are found. The relative displacement
of the self-trapped state, the self-trapped well and the energy of the electron, and the density of
current carried by excitations are calculated. The relations between periodic solutions on a ring
and soliton solutions on a chain are discussed.

1. Introduction

As is now known, a slowly moving electron (or hole) in a molecular-crystal medium may lower
its energy by locally distorting the crystal lattice surrounding it[1]. Due to the electron—phonon
interaction, such a lattice deformation can produce a potential well trapping the electron. This
entity, the ‘self-trapped’ electron together with its induced lattice distortion, is commonly
called the polaron, which has attracted much attention through the years [2]. The possibility
of self-trapping in a one-dimensional electron—phonon system was first studied by Holstein
[3]. Further research on polarons has been carried out by many authors [4]. In this paper, we
consider the molecular-crystal model (MCM) with the dispersion term on a diatomic molecule
ring. We find periodic solutions (cnoidal waves) for excitations in the model and show that
periodic solutions tend to soliton solutions obtained in a previous paper [5] when the perimeter
of the ring tends towards infinity. In addition, we also give the relative displacement of the
self-trapped state, the self-trapped well and the energy of the electron, and the density of current
carried by excitations.

In section 2 we will introduce the model and give the equations of motion, while in
section 3 we obtain periodic solutions of the equations of motion and discuss their limits.
Section 4 contains our conclusions.

2. The model and the equations of motion

The Lagrangian of the MCM with the dispersion term on a diatomic molecule ring can be
written as

L:/l ax| 2 (2" 2_p(w5+w%)u2+pazw% u’
0 2\ ot 2 4 ox

ﬂ(w*aw aw*> R oyt oy,

o\ % V%) T 2max ax
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whereu(x, ) is the relative displacement of atoms of the diatomic molecule at poamtd
time ¢, andy (x, ¢t) the wavefunction of electronsgy is the Einstein’s frequency and, the
dispersion frequency of the lattice optical vibrations;= M/a is the lattice densityM
the molecular mass andthe lattice parameter; is the effective mass for electrons in the
conduction bandA the coupling constant, aridhe perimeter of the ring. Obvioushy,(x, t)
andu(x, t) must satisfy the condition of periodicity

Yx,t) =v(x+1,1) u(x,t) =u(x+1,1). (2.2)
The wavefunction) is normalized

1
/ [y (x, H)|?dx = 1. (2.3)
0
The equations of motion for the Lagrangian (2.1) are
oY "% 9%y
h—=——_—L1_A 2.4
M ar = Tomaee A 24)
3%u P aw? d%u  Aa , ,
Equation (2.4) is the Schdinger equation for an electron in a potential well given by
Vx,t) = —Au(x,t) (2.6)

while equation (2.5) is an equation for an oscillator with frequengwgffected by dispersion
terms, which ara)f—proportional, and an external fielg|2.
We will look for solutions of the forms

. E
Y(x, 1) = o) exp[l (kx - f’)} u(x, 1) =u(n) (2.7)

for equations (2.4) and (2.5), wheteis a real function ofy = x — vr. Substituting
equation (2.7) in (2.4) and (2.5) and taking the adiabatic approximation, i.e. dropping the
kinetic energy term of the lattice vibration, as the velocitgf the ‘self-trapped’ electron is
very small, we get

72 d%p Rk?
Aa a?w? d?u
2 2 2 1
((,()O + (,()l)l/l = ﬁ(p — 2 _d,72 (29)
and
k=mv/h (2.10)

the wavenumber of the electron. It is interesting only for the narrow optical band case, i.e.
w1 <K wo. In this situation, an iterative solution of equation (2.9) is given by

Aa a)f 5 Aa3a)f d2¢ o1\
=—(1-=2 - ——Z+0l(=) | 2.11
u(n) ng( w(2)>¢ () 2Mwf G2 [<w0> ] (2.11)
By combining equations (2.8) and (2.11), the equatiorfes obtained
s yp d¢? 3
L T 4 2up—2ap =0 2.12
Gz~ 2 an np” — 1o (2.12)
where
2mA%aw? mAZa w? 2mE
= —— ==——|1-—= and A =k?— 2.13
YT M "= M ( wg> 72 (213)
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Equation (2.12) is a modified nonlinear Sgtiinger equation. Theg-proportional term is the
modification term.
The condition of periodicity (2.2) is changed accordingly into

() =dm+1) u(n) =u(m+1) (2.14)
and
k = 2nm/l n=0,+1,+2, ... (2.15)

thatis to say, the wavevectbrconsequently, the velocityof the electron from equation (2.10),
is quantized

v =nh/ml n=0,+1+2,.... (2.16)
3. Periodic solutions and their limits
In order to obtain solutions of equation (2.12), we integrate (2.12) once to result in

do \?

(1- y¢2)<&) = w5 — ) (@* - D) (3.1)

where
A
vi<oP<ds  dire = Sk =c (3.2)

andc is an integration constant. There are two different sets of solutions of equation (2.12)
depending or being positive or negative.

3.1. The case af > 0.

Integrating equation (3.1) once again, we arrive at the cnoidal wave solutiont

1 dn_1< ¢£2—V q>_ Y
Ja—yode2 Vo=2—v Ja— ygde?
1 1
X[(tbf— ;)H(&b, 61)+;F(8,q)} =/ —no) (3.3)

where drix, ¢) is the Jacobian elliptic function of the third kind [E]L(8, b, ¢) and F (6, q)
are, respectively, the elliptic integrals of the third and the first kinds [6]

F)
[, b, q) = / % (3.4)
0

(1 +bsirf0),/1— g2sinto

T Some details of obtaining equation (3.3) are given here. Equation (3.1) can be rewritten as

1 do - y¢*
JA—78)@3 - 6262 — 9D JA—v6263 — 6262 — 62
Settingy = ¢~2, the integration of the first term becomes
1 y d),
2,/ ¢22 /r2 N=O =D —y2)(y —y3)

which gives the first term of equation (3.3) according to Greenhill in [6], where ¢1 , Y2 = ¢2 ,y3=7y.
The integration of the second term directly gives the second term of equation (3. 3) according to Byrd and Friedman
in [6].
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8 de
F(5,q) = / — (3.5)
0 J1—¢g2?sirfe
, 93— g2 . \/ (1— y¢?)(p2 — ¢2) y (@5 — ¢2)
= =" § = arcsin b= "—"="3+- 3.6
T = 21— yed) A— 7)) @2 — 0D 1-yg &9

while g = xg — vfg is another integration constant which represents the locagiof some
maximum of the cnoidal wave at timig Parametey is the modulus of the Jacobian elliptic
function and the elliptic integrals given above, ang @2 < 1.

Whenw; < wo, from equation (2.13) one has« 1, so the second term on the left-hand
side of (3.3), which is of the same ordernascan be neglected. Then an approximate cnoidal
wave solution of equation (2.12) can be obtained using (3.6), which is given by

1 1 -2 ~1/2
d(m) = {(F - )[dn(ay/ﬂ(ﬁ — 3 — no). 61)} + V} . 37
2

The following results are based on equation (3.7). As the period of the Jacobian elliptic
functiondn(x, ¢) is2K (¢), whereK (q) = F(/2, q), iftakings = 7/2in (3.5), isacomplete
elliptic integral of the first kind, the condition of periodicity (2.14) leads to

1
g,m(qsg — ¢l = 2n1K(q) n=123,... (3.8)

wheren; is the number of periods of the cnoidal wave contained in the ring. It can be seen
from equations (3.7) and (3.8) that the wavelength of the cnoidal wave may be r&ad as

In order to apply continuum limits, it is necessary that; > «a, thereforen; < [/a = N.

The maximum of?(n) is ¢3 atn = no + (n2/n1)l,ny = 1, 2,3, ..., ny, and the minimum is

@2 atn = no + ((n2/n1) + (1/2n1))l. As a result, using equation (3.8), the amplitude of the
cnoidal wave (3.7) can be represented as

¢z = Omax — Pmin = $3 — ¢1 = Bq” (3.9)
where
4n§K2(q)
B=——i—. (3.10)
ul
The normalization condition fap (1) yields
201[K (q) = (1= y$3)T1(by, )] = g\/u@% — 2 (3.11)

with by = —b = —y¢2q?, wherell (b1, q) = T1(/2, b1, q), if replacingb by b, and taking
8 = /2 in equation (3.4), is a complete elliptic integral of the third kind.

Introducing equation (3.7) in (2.11) and correcting to the first order amd the second
order inw; /wo, ONe can obtain the relative displacement of the self-trapped state

Aa w2 1 1 -2 -1
uln) = - (1— w_(%){(@ - )[dn(a/u(qﬁﬁ — ¢2)(n — no). q)} + V} :

0

(3.12)
From equation (2.6) the self-trapped potential well of the electron is given by

A2 2 1 1 -2 -1
Vi) = —— (l— w—;){(—z —)/> [dn<—\/u(¢§—¢>f)(n—no),q)] +V} :
Mo wg @5 q

0
(3.13)
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The density of current carried by the cnoidal wave can be obtained from equation (2.4)

) -1
J() = evp?(n) = ev{ <¢—12 - V) [dne\/u(qﬁ — ¢ (1 — o), q)} + 7/} (3.14)

2
which is quantized as a result of quantizatiorvafs shown in equation (2.16), wherés the
charge of an electron.
From equations (3.9) and (3.12), we get the amplitude of the relative displacement of the
self-trapped state

Aa w?
.= — Umin = — (1 — — | B4 3.15
u Umax — Umin ng ( wg> q ( )
The depth of the self-trapped potential well of the electron and the amplitude of the density of
current carried by the cnoidal wave are expressed by the following expressions, respectively:

A2a w2
V, = Vinax— Vimin = —— [ 1 — =% | B4? 3.16
max min ng( CUS) q ( )
and
Ja = Jmax — Jmin = equZ' (3.17)

Meanwhileg? and¢2 can be derived from equations (3.6) and (3.8)

1
o= 5o[L+£vBg* — V(A +yBgH? — 4y B]. (3.18)
' 14

Introducing equation (3.18) in (3.2) and combining equations (2.10) and (2.13) lead to the
energy of the electron

1 A%a

E=_m?———[1-J(1+yBg?»2—4yB 3.19

S 2chz)y[ V(L +yBg?)? — 4y B] (3.19)
where the first term is the kinetic energy of the electron which is quantized as a result of
guantization ofv, and the second term is the potential energy of the electron in the potential
well given by equation (3.13).

There are two limiting cases for the periodic solution (3.7). Wen 0, the solution (3.7)

becomes
A
d(n) = 1/2— (3.20)
W

which represents a plane wave. This is the case of a linear limit. Correspondingly, from
equations (3.12)—(3.14), we have

Aa w?
= 1- 2 21
u(n) ngl< w%) (3.21)
A2a a)f
Vo=~ (%) ©22
and
jm) =ev/l. (3.23)

Here the normalization conditidn= 2/ is used. Itis evident that, = V, = j, = 0. The
corresponding energy of the electron is

1 A2 2
E=Zm?— —“(1 — ﬂ). (3.24)



652 H Chen and Y Chen

It can be seen from equations (3.22) and (3.24) that the wavefunction (3.20) describes the
situation that an electron moves in a constant potential.
Wheng — 1, from equation (3.6) and (3.8), we arrivegat— 0 and! — oo, i.e. aring
being changed into a chain. As— 1, the Jacobian elliptic function dn, g) — sechx, so
the solution (3.7) is reduced to a soliton solution

_ ~1/2
o) = (ycosecﬁ sz;y cosit - o, y> (3.25)

S

with the widthLg = /y /ucoth(, /iy /2n1). This is the case of the most nonlinear limit. The
cnoidal waves are intermediary, being situated between plane waves and solitons. The peak
of the soliton isPs = (1/,/y) tanh(,/ixy /2n1), while the energy of the soliton is

1 A2 2
E=Zm?———2 (1 - ‘”—§> tani? Y22 (3.26)
2 2M Wiy w§ 2n,

Hence, the larger the numbey of periods of the cnoidal wave contained in a ring, the wider
the width of the corresponding soliton, the lower the peak, the higher the energy and the more
unstable the corresponding soliton. This is why we usually take 1 for polarons. When

ny = 1, equations (3.25) and (3.26) are just the results of a previous paper [5] by the present
authors and the corresponding), V() and j(n) can be attained from equations (3.12)—
(3.14) with the limitg — 1. Whileu, andV, respectively become

0(1 o )2 ! and v, v°<1 ©f )2 L ko
Uy =1u - — = - — .
“ w§) ) “ w§) fi@)

where
2.2 4. 2
0 mA“a 0 mA®a
u, = ———— and Vie———— 3.28
AP M2w “ M2 ( )
are, respectively, those in the usual MCM [3], afilr) = « cotha with @ = /uy /2. j.
becomes
2
. .0 w7 1
= 1-— 3.29
Je J“( wS) f2(@) (3.29)
where

.0 evmA2a?

= M
is that in the usual MCM.

3.2. Thecaseaf < 0

In this case, the cnoidal wave solution of equation (2.12) is

1 _1< ¢£2 -Y ) 14 |:( 2 1> ror 1 ro
=0\ g )| ==\~ = |15, b, q)+ —F(&.q)
=2 __
Vo= NIV et - 6] Y Y
= Vi = mp) (3.30)
where crix, ¢’) is the Jacobian elliptic function of the second kind [6], and

. By Y L
e 7l § = —re T b = . 3.31
T g AN 2 =97 v (3:31)
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The meanings ofi, andq’ are the same as thoseqf andq as stated above. For the same
reason for which equation (3.7) is derived from (3.3), we can arrive at another approximate
cnoidal wave solution of (2.12)

1 —1/2
&) = {(; _ )[cn(w/msé — 03— ). g)] 2+ y} . 332)
2

As the period of cA(x, ¢') is 2K (¢'), the condition of periodicity (2.14) gives

w(@s — ¢l =2n1K(q)  np=1,23, ... (3.33)

wheren’ is the number of periods of the cnoidal wave with wavelerigitj contained in the
ring. The maximun®3 of ¢%(n) is located a) = ny+ (ny/n))l,ny = 1,2,3, ..., n}, and the
minimum zero ofp’?(n) is atn = no + ((ny/nh) + (1/2n'))l. So the amplitude of the cnoidal
wave (3.32) is

i = Pinax— Proin = 93 (3.34)
The normalization condition fap’ () yields

2n4[K(q") — (1 — y¢S)TI(by, )] = v/ (@2 — ¢2) (3.35)

with by = —b' = —y ¢3.
By a similar method used in the casecof 0, we obtain the relative displacement of the
self-trapped state

, A 2\ (/1 PP
u'(n) = MZ)Z (l - Z—%) { (¢—§ - )[Cn(\/u«(dé — ¢ (n —1p). g7+ J/} (3.36)

0

the self-trapped potential well of the electron
) AZ%q w? 1 L -
V() = _W<1 - w—;) { (q? - )/)[Cn(\/#@% — D) —mp), gD 2+ 7/} (3.37)
0 0 2

and the density of current carried by the cnoidal wave

1 -2 -1
j'(n) = evg(n) = ev{ ((? - y)[cn(\/u(tz&% — %) (n — 1), q’)] + V} (3.38)
2

which is also quantized likg¢(n) of equation (3.14).

From equations (3.34), (3.36)—(3.38), one can respectively obtain the amplitude of the
relative displacement of the self-trapped state, the depth of the self-trapped potential well of
the electron and the amplitude of the density of current carried by the cnoidal wave

Aad> 2 A2q02 2
u, = a¢22 <1 — %) V= ad;Z (1 — w—;) and j= ev¢§. (3.39)
Mawyq wy Mawyg

Meanwhile, from equations (3.31) and (B.Q@andqsg can be expressed as

1 7
¢%, = 5, [LF VB ~ V@ +yB)?—4yB'q? (3.40)

where
_ 4nPK%(q)

B/
ul?

(3.41)
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From equations (2.10), (2.13), (3.2) and (3.40), the energy of the electron can be given by

1, Aa
E=_-mv°—
2 2Mu)§y
whose two terms have the same meanings as those in equation (3.19).

There are also two limiting cases for the periodic solution (3.32), when 0,¢'(n) = 0.

This is an extremely trivial solution of equation (2.12) and is meaningless. In fact, when
q? < % we can see from equation (3.42) that the potential energy of the electron is positive
and thereby this kind of state of the electron is unstable.

Wheng’ — 1, ¢; — 0 andl — oco. As g’ — 1, the Jacobian elliptic function
cn(x, ¢’) — sechx. Apparently, the discussion for this limiting case is completely similar to
that of the case far > 0 and can lead to the same results.

On the other hand, whepm — 0, we are able to verify that the periodic solutions (3.7)
and (3.32) are equivalent to those of [7].

[1-V@+yB)2—4yBq? (3.42)

4. Conclusions

In summary, two different spatially periodic solutions for excitations in the MCM with the
dispersion term on a diatomic molecule ring were found by use of the Jacobian elliptic functions
of the second and the third kinds. The relative displacement of the self-trapped state, the self-
trapped well and energy of the electron, and the density of current carried by excitations were
also calculated. Two limits of periodic solutions were discussed. When the moduli of the
Jacobian elliptic functions tend to zero, the periodic solution corresponding t0 tends to

the plane wave solution, and the other one correspondingt® tends to zero. In fact, when

the square of the modulus ofon ¢’) is less than}, the periodic solution of < 0 is unstable;

this is because the potential energy of the electron becomes positive. When the moduli tend
to one, both periodic solutions tend to the soliton solution. This is the case=0D. So

the periodic solutions of the model are more universal than a soliton solution. Our results
will be useful in the research of the mesoscopic phenomena of small size quantum systems
when taking the influences of the Aharonov—Bohm potential into account. Applications of our
results to the mesoscopic phenomena will be studied further in a forthcoming paper.
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