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Abstract. Spatially periodic solutions (cnoidal waves) for excitations of a molecular-crystal
model with the dispersion term on a diatomic molecule ring are found. The relative displacement
of the self-trapped state, the self-trapped well and the energy of the electron, and the density of
current carried by excitations are calculated. The relations between periodic solutions on a ring
and soliton solutions on a chain are discussed.

1. Introduction

As is now known, a slowly moving electron (or hole) in a molecular-crystal medium may lower
its energy by locally distorting the crystal lattice surrounding it [1]. Due to the electron–phonon
interaction, such a lattice deformation can produce a potential well trapping the electron. This
entity, the ‘self-trapped’ electron together with its induced lattice distortion, is commonly
called the polaron, which has attracted much attention through the years [2]. The possibility
of self-trapping in a one-dimensional electron–phonon system was first studied by Holstein
[3]. Further research on polarons has been carried out by many authors [4]. In this paper, we
consider the molecular-crystal model (MCM) with the dispersion term on a diatomic molecule
ring. We find periodic solutions (cnoidal waves) for excitations in the model and show that
periodic solutions tend to soliton solutions obtained in a previous paper [5] when the perimeter
of the ring tends towards infinity. In addition, we also give the relative displacement of the
self-trapped state, the self-trapped well and the energy of the electron, and the density of current
carried by excitations.

In section 2 we will introduce the model and give the equations of motion, while in
section 3 we obtain periodic solutions of the equations of motion and discuss their limits.
Section 4 contains our conclusions.

2. The model and the equations of motion

The Lagrangian of the MCM with the dispersion term on a diatomic molecule ring can be
written as

L =
∫ l

0
dx

[
ρ

2

(
∂u

∂t

)2

− ρ(ω
2
0 + ω2

1)

2
u2 +

ρa2ω2
1

4

(
∂u

∂x

)2

+
ih̄

2

(
ψ∗
∂ψ

∂t
− ψ ∂ψ

∗

∂t

)
− h̄2

2m

∂ψ∗

∂x

∂ψ

∂x
+Au|ψ |2

]
(2.1)
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whereu(x, t) is the relative displacement of atoms of the diatomic molecule at pointx and
time t , andψ(x, t) the wavefunction of electrons;ω0 is the Einstein’s frequency andω1 the
dispersion frequency of the lattice optical vibrations;ρ = M/a is the lattice density,M
the molecular mass anda the lattice parameter;m is the effective mass for electrons in the
conduction band,A the coupling constant, andl the perimeter of the ring. Obviously,ψ(x, t)
andu(x, t) must satisfy the condition of periodicity

ψ(x, t) = ψ(x + l, t) u(x, t) = u(x + l, t). (2.2)

The wavefunctionψ is normalized∫ l

0
|ψ(x, t)|2 dx = 1. (2.3)

The equations of motion for the Lagrangian (2.1) are

ih̄
∂ψ

∂t
= − h̄

2

2m

∂2ψ

∂x2
− Auψ (2.4)

∂2u

∂t2
= −(ω2

0 + ω2
1)u−

a2ω2
1

2

∂2u

∂x2
+
Aa

M
|ψ |2. (2.5)

Equation (2.4) is the Schrödinger equation for an electron in a potential well given by

V (x, t) = −Au(x, t) (2.6)

while equation (2.5) is an equation for an oscillator with frequencyω0 affected by dispersion
terms, which areω2

1-proportional, and an external field|ψ |2.
We will look for solutions of the forms

ψ(x, t) = φ(η) exp

[
i

(
kx − E

h̄
t

)]
u(x, t) = u(η) (2.7)

for equations (2.4) and (2.5), whereφ is a real function ofη = x − vt . Substituting
equation (2.7) in (2.4) and (2.5) and taking the adiabatic approximation, i.e. dropping the
kinetic energy term of the lattice vibration, as the velocityv of the ‘self-trapped’ electron is
very small, we get

h̄2

2m

d2φ

dη2
+Auφ +

(
E − h̄

2k2

2m

)
φ = 0 (2.8)

(ω2
0 + ω2

1)u =
Aa

M
φ2 − a

2ω2
1

2

d2u

dη2
(2.9)

and

k = mv/h̄ (2.10)

the wavenumber of the electron. It is interesting only for the narrow optical band case, i.e.
ω1� ω0. In this situation, an iterative solution of equation (2.9) is given by

u(η) = Aa

Mω2
0

(
1− ω

2
1

ω2
0

)
φ2(η)− Aa

3ω2
1

2Mω4
0

d2φ

dη2
+ O

[(
ω1

ω0

)4]
. (2.11)

By combining equations (2.8) and (2.11), the equation forφ is obtained

d2φ

dη2
− γφ

2

d2φ2

dη2
+ 2µφ3− λφ = 0 (2.12)

where

γ = 2mA2a3ω2
1

h̄2Mω4
0

µ = mA2a

h̄2Mω2
0

(
1− ω

2
1

ω2
0

)
and λ = k2 − 2mE

h̄2 . (2.13)
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Equation (2.12) is a modified nonlinear Schrödinger equation. Theγ -proportional term is the
modification term.

The condition of periodicity (2.2) is changed accordingly into

φ(η) = φ(η + l) u(η) = u(η + l) (2.14)

and

k = 2nπ/l n = 0,±1,±2, . . . (2.15)

that is to say, the wavevectork, consequently, the velocityv of the electron from equation (2.10),
is quantized

v = nh/ml n = 0,±1,±2, . . . . (2.16)

3. Periodic solutions and their limits

In order to obtain solutions of equation (2.12), we integrate (2.12) once to result in

(1− γφ2)

(
dφ

dη

)2

= µ(φ2
2 − φ2)(φ2 − φ2

1) (3.1)

where

φ2
1 6 φ2 6 φ2

2 φ2
1 + φ2

2 =
λ

µ
φ2

1φ
2
2 = c (3.2)

andc is an integration constant. There are two different sets of solutions of equation (2.12)
depending onc being positive or negative.

3.1. The case ofc > 0.

Integrating equation (3.1) once again, we arrive at the cnoidal wave solution†

1√
(1− γφ2

1)φ
2
2

dn−1

(√
φ−2

2 − γ
φ−2 − γ , q

)
− γ√

(1− γφ2
1)φ

2
2

×
[(
φ2

2 −
1

γ

)
5(δ, b, q) +

1

γ
F(δ, q)

]
= √µ(η − η0) (3.3)

where dn(x, q) is the Jacobian elliptic function of the third kind [6],5(δ, b, q) andF(δ, q)
are, respectively, the elliptic integrals of the third and the first kinds [6]

5(δ, b, q) =
∫ δ

0

dθ

(1 +b sin2 θ)

√
1− q2 sin2 θ

(3.4)

† Some details of obtaining equation (3.3) are given here. Equation (3.1) can be rewritten as

1√
(1− γφ2)(φ2

2 − φ2)(φ2 − φ2
1)

dφ − γφ2√
(1− γφ2)(φ2

2 − φ2)(φ2 − φ2
1)

dφ = √µ dη.

Settingy = φ−2, the integration of the first term becomes

1

2
√
φ2

1φ
2
2

∫ y

y2

dy√−(y − y1)(y − y2)(y − y3)

which gives the first term of equation (3.3) according to Greenhill in [6], wherey1 = φ−2
1 , y2 = φ−2

2 , y3 = γ .
The integration of the second term directly gives the second term of equation (3.3) according to Byrd and Friedman

in [6].
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F(δ, q) =
∫ δ

0

dθ√
1− q2 sin2 θ

(3.5)

q2 = φ2
2 − φ2

1

φ2
2(1− γφ2

1)
δ = arcsin

√
(1− γφ2

1)(φ
2
2 − φ2)

(1− γφ2)(φ2
2 − φ2

1)
b = γ (φ2

2 − φ2
1)

1− γφ2
1

(3.6)

while η0 = x0 − vt0 is another integration constant which represents the locationx0 of some
maximum of the cnoidal wave at timet0. Parameterq is the modulus of the Jacobian elliptic
function and the elliptic integrals given above, and 0< q2 < 1.

Whenω1� ω0, from equation (2.13) one hasγ � 1, so the second term on the left-hand
side of (3.3), which is of the same order asγ , can be neglected. Then an approximate cnoidal
wave solution of equation (2.12) can be obtained using (3.6), which is given by

φ(η) =
{(

1

φ2
2

− γ
)[

dn

(
1

q

√
µ(φ2

2 − φ2
1)(η − η0), q

)]−2

+ γ

}−1/2

. (3.7)

The following results are based on equation (3.7). As the period of the Jacobian elliptic
function dn(x, q) is 2K(q), whereK(q) = F(π/2, q), if takingδ = π/2 in (3.5), is a complete
elliptic integral of the first kind, the condition of periodicity (2.14) leads to

1

q

√
µ(φ2

2 − φ2
1)l = 2n1K(q) n1 = 1, 2, 3, . . . (3.8)

wheren1 is the number of periods of the cnoidal wave contained in the ring. It can be seen
from equations (3.7) and (3.8) that the wavelength of the cnoidal wave may be read asl/n1.
In order to apply continuum limits, it is necessary thatl/n1 � a, thereforen1 � l/a = N .
The maximum ofφ2(η) is φ2

2 atη = η0 + (n2/n1)l, n2 = 1, 2, 3, . . . , n1, and the minimum is
φ2

1 at η = η0 + ((n2/n1) + (1/2n1))l. As a result, using equation (3.8), the amplitude of the
cnoidal wave (3.7) can be represented as

φ2
a = φ2

max− φ2
min = φ2

2 − φ2
1 = Bq2 (3.9)

where

B = 4n2
1K

2(q)

µl2
. (3.10)

The normalization condition forφ(η) yields

2n1[K(q)− (1− γφ2
2)5(b1, q)] = γ

q

√
µ(φ2

2 − φ2
1) (3.11)

with b1 = −b = −γφ2
2q

2, where5(b1, q) = 5(π/2, b1, q), if replacingb by b1 and taking
δ = π/2 in equation (3.4), is a complete elliptic integral of the third kind.

Introducing equation (3.7) in (2.11) and correcting to the first order ina and the second
order inω1/ω0, one can obtain the relative displacement of the self-trapped state

u(η) = Aa

Mω2
0

(
1− ω

2
1

ω2
0

){(
1

φ2
2

− γ
)[

dn

(
1

q

√
µ(φ2

2 − φ2
1)(η − η0), q

)]−2

+ γ

}−1

.

(3.12)

From equation (2.6) the self-trapped potential well of the electron is given by

V (η) = − A
2a

Mω2
0

(
1− ω

2
1

ω2
0

){(
1

φ2
2

− γ
)[

dn

(
1

q

√
µ(φ2

2 − φ2
1)(η − η0), q

)]−2

+ γ

}−1

.

(3.13)
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The density of current carried by the cnoidal wave can be obtained from equation (2.4)

j (η) = evφ2(η) = ev
{(

1

φ2
2

− γ
)[

dn

(
1

q

√
µ(φ2

2 − φ2
1)(η − η0), q

)]−2

+ γ

}−1

(3.14)

which is quantized as a result of quantization ofv as shown in equation (2.16), wheree is the
charge of an electron.

From equations (3.9) and (3.12), we get the amplitude of the relative displacement of the
self-trapped state

ua = umax− umin = Aa

Mω2
0

(
1− ω

2
1

ω2
0

)
Bq2. (3.15)

The depth of the self-trapped potential well of the electron and the amplitude of the density of
current carried by the cnoidal wave are expressed by the following expressions, respectively:

Va = Vmax− Vmin = A2a

Mω2
0

(
1− ω

2
1

ω2
0

)
Bq2 (3.16)

and

ja = jmax− jmin = evBq2. (3.17)

Meanwhileφ2
1 andφ2

2 can be derived from equations (3.6) and (3.8)

φ2
1,2 =

1

2γ
[1± γBq2 −

√
(1 +γBq2)2 − 4γB]. (3.18)

Introducing equation (3.18) in (3.2) and combining equations (2.10) and (2.13) lead to the
energy of the electron

E = 1

2
mv2 − A2a

2Mω2
0γ

[1−
√
(1 +γBq2)2 − 4γB] (3.19)

where the first term is the kinetic energy of the electron which is quantized as a result of
quantization ofv, and the second term is the potential energy of the electron in the potential
well given by equation (3.13).

There are two limiting cases for the periodic solution (3.7). Whenq → 0, the solution (3.7)
becomes

φ(η) =
√
λ

2µ
(3.20)

which represents a plane wave. This is the case of a linear limit. Correspondingly, from
equations (3.12)–(3.14), we have

u(η) = Aa

Mω2
0l

(
1− ω

2
1

ω2
0

)
(3.21)

V (η) = − A2a

Mω2
0l

(
1− ω

2
1

ω2
0

)
(3.22)

and

j (η) = ev/l. (3.23)

Here the normalization conditionl = 2µ/λ is used. It is evident thatua = Va = ja = 0. The
corresponding energy of the electron is

E = 1

2
mv2 − A2a

Mω2
0l

(
1− ω

2
1

ω2
0

)
. (3.24)
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It can be seen from equations (3.22) and (3.24) that the wavefunction (3.20) describes the
situation that an electron moves in a constant potential.

Whenq → 1, from equation (3.6) and (3.8), we arrive atφ1→ 0 andl →∞, i.e. a ring
being changed into a chain. Asq → 1, the Jacobian elliptic function dn(x, q)→ sechx, so
the solution (3.7) is reduced to a soliton solution

φ(η) =
(
γ cosech2

√
µγ

2n1
cosh2

η − η0

Ls
+ γ

)−1/2

(3.25)

with the widthLs =
√
γ /µcoth(

√
µγ /2n1). This is the case of the most nonlinear limit. The

cnoidal waves are intermediary, being situated between plane waves and solitons. The peak
of the soliton isPs = (1/√γ ) tanh(

√
µγ /2n1), while the energy of the soliton is

E = 1

2
mv2 − A2a

2Mω2
0γ

(
1− ω

2
1

ω2
0

)
tanh2

√
µγ

2n1
. (3.26)

Hence, the larger the numbern1 of periods of the cnoidal wave contained in a ring, the wider
the width of the corresponding soliton, the lower the peak, the higher the energy and the more
unstable the corresponding soliton. This is why we usually taken1 = 1 for polarons. When
n1 = 1, equations (3.25) and (3.26) are just the results of a previous paper [5] by the present
authors and the correspondingu(η), V (η) andj (η) can be attained from equations (3.12)–
(3.14) with the limitq → 1. Whileua andVa respectively become

ua = u0
a

(
1− ω

2
1

ω2
0

)2 1

f 2(α)
and Va = V 0

a

(
1− ω

2
1

ω2
0

)2 1

f 2(α)
(3.27)

where

u0
a =

mA2a2

4h̄2M2ω4
0

and V 0
a =

mA4a2

4h̄2M2ω4
0

(3.28)

are, respectively, those in the usual MCM [3], andf (α) = α cothα with α = √µγ /2. ja
becomes

ja = j0
a

(
1− ω

2
1

ω2
0

)
1

f 2(α)
(3.29)

where

j0
a =

evmA2a2

4h̄2Mω2
0

is that in the usual MCM.

3.2. The case ofc < 0

In this case, the cnoidal wave solution of equation (2.12) is

1√
φ2

2 − φ2
1

cn−1

(√
φ−2

2 − γ
φ′−2 − γ , q

)
− γ√

φ2
2 − φ2

1

[(
φ2

2 −
1

γ

)
5(δ′, b′, q ′) +

1

γ
F(δ′, q ′)

]
= √µ(η − η′0) (3.30)

where cn(x, q ′) is the Jacobian elliptic function of the second kind [6], and

q ′2 = φ2
2(1− γφ2

1)

φ2
2 − φ2

1

δ′ = arcsin

√
φ2

2 − φ′2
φ2

2(1− γφ′2)
b′ = γφ2

2. (3.31)
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The meanings ofη′0 andq ′ are the same as those ofη0 andq as stated above. For the same
reason for which equation (3.7) is derived from (3.3), we can arrive at another approximate
cnoidal wave solution of (2.12)

φ′(η) =
{(

1

φ2
2

− γ
)

[cn(
√
µ(φ2

2 − φ2
1)(η − η′0), q ′)]−2 + γ

}−1/2

. (3.32)

As the period of cn2(x, q ′) is 2K(q ′), the condition of periodicity (2.14) gives√
µ(φ2

2 − φ2
1)l = 2n′1K(q

′) n′1 = 1, 2, 3, . . . (3.33)

wheren′1 is the number of periods of the cnoidal wave with wavelengthl/n′1 contained in the
ring. The maximumφ2

2 of φ′2(η) is located atη = η′0 + (n′2/n
′
1)l, n

′
2 = 1, 2, 3, . . . , n′1, and the

minimum zero ofφ′2(η) is atη = η′0 + ((n′2/n
′
1) + (1/2n′1))l. So the amplitude of the cnoidal

wave (3.32) is

φ′2a = φ′2max− φ′2min = φ2
2. (3.34)

The normalization condition forφ′(η) yields

2n′1[K(q ′)− (1− γφ2
2)5(b

′
1, q
′)] = γ

√
µ(φ2

2 − φ2
1) (3.35)

with b′1 = −b′ = −γφ2
2.

By a similar method used in the case ofc > 0, we obtain the relative displacement of the
self-trapped state

u′(η) = Aa

Mω2
0

(
1− ω

2
1

ω2
0

){(
1

φ2
2

− γ
)

[cn(
√
µ(φ2

2 − φ2
1)(η − η′0), q ′)]−2 + γ

}−1

(3.36)

the self-trapped potential well of the electron

V ′(η) = − A
2a

Mω2
0

(
1− ω

2
1

ω2
0

){(
1

φ2
2

− γ
)

[cn(
√
µ(φ2

2 − φ2
1)(η − η′0), q ′)]−2 + γ

}−1

(3.37)

and the density of current carried by the cnoidal wave

j ′(η) = evφ′2(η) = ev
{(

1

φ2
2

− γ
)

[cn(
√
µ(φ2

2 − φ2
1)(η − η′0), q ′)

]−2

+ γ

}−1

(3.38)

which is also quantized likej (η) of equation (3.14).
From equations (3.34), (3.36)–(3.38), one can respectively obtain the amplitude of the

relative displacement of the self-trapped state, the depth of the self-trapped potential well of
the electron and the amplitude of the density of current carried by the cnoidal wave

u′a =
Aaφ2

2

Mω2
0

(
1− ω

2
1

ω2
0

)
V ′a =

A2aφ2
2

Mω2
0

(
1− ω

2
1

ω2
0

)
and j ′a = evφ2

2. (3.39)

Meanwhile, from equations (3.31) and (3.33)φ2
1 andφ2

2 can be expressed as

φ2
1,2 =

1

2γ
[1∓ γB ′ −

√
(1 +γB ′)2 − 4γB ′q ′2] (3.40)

where

B ′ = 4n′21K
2(q ′)

µl2
. (3.41)
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From equations (2.10), (2.13), (3.2) and (3.40), the energy of the electron can be given by

E = 1

2
mv2 − A2a

2Mω2
0γ

[1−
√
(1 +γB ′)2 − 4γB ′q ′2] (3.42)

whose two terms have the same meanings as those in equation (3.19).
There are also two limiting cases for the periodic solution (3.32), whenq ′ → 0,φ′(η) = 0.

This is an extremely trivial solution of equation (2.12) and is meaningless. In fact, when
q ′2 < 1

2, we can see from equation (3.42) that the potential energy of the electron is positive
and thereby this kind of state of the electron is unstable.

When q ′ → 1, φ1 → 0 and l → ∞. As q ′ → 1, the Jacobian elliptic function
cn(x, q ′)→ sechx. Apparently, the discussion for this limiting case is completely similar to
that of the case forc > 0 and can lead to the same results.

On the other hand, whenγ → 0, we are able to verify that the periodic solutions (3.7)
and (3.32) are equivalent to those of [7].

4. Conclusions

In summary, two different spatially periodic solutions for excitations in the MCM with the
dispersion term on a diatomic molecule ring were found by use of the Jacobian elliptic functions
of the second and the third kinds. The relative displacement of the self-trapped state, the self-
trapped well and energy of the electron, and the density of current carried by excitations were
also calculated. Two limits of periodic solutions were discussed. When the moduli of the
Jacobian elliptic functions tend to zero, the periodic solution corresponding toc > 0 tends to
the plane wave solution, and the other one corresponding toc < 0 tends to zero. In fact, when
the square of the modulus of cn(x, q ′) is less than1

2, the periodic solution ofc < 0 is unstable;
this is because the potential energy of the electron becomes positive. When the moduli tend
to one, both periodic solutions tend to the soliton solution. This is the case ofc = 0. So
the periodic solutions of the model are more universal than a soliton solution. Our results
will be useful in the research of the mesoscopic phenomena of small size quantum systems
when taking the influences of the Aharonov–Bohm potential into account. Applications of our
results to the mesoscopic phenomena will be studied further in a forthcoming paper.
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